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This paper provides a framework for optimally representing student written essays in
a vector space, based upon Latent Semantic Analysis and instructor evaluated grades.
Comparing student essays to an authoritative source, a ranking scheme is optimized
that allows for a unique vector space representation on the unit circle. Once such a
representation has been found, traditional methods of circular data analysis and inference
can be applied, as we demonstrate.

1. Introduction

In many academic settings it is important to understand the textual writing styles
of students to measure how a certain lesson makes its way into the students’ writ-
ings. The focus of this article is to present a new semantic analysis technique that
allows for instructors to better quantify written essays in a manner comparable to
traditional numerical approaches. A typical question an instructor may be inter-
ested in is whether there is a significant amount of variability in the responses to a
given question. Another question an instructor may be interested in is how deeply
the course content has been retained and to know how far the student responses
are, in a semantic sense, from the original source and whether this is influenced by
other outside factors. Clearly, some insight into these questions is available from the
grade evaluation of the teacher, although at a rough resolution. Typically, grades
are given on an interval scale of 1 . . . 10 or on the letter grade scale of A, B, C,
D, F. At this resolution of evaluation, inferences into the structure and variability
within grade classes is difficult to assess and quantify. In addition, many educators
often normalize their expectations of grades and in doing so internally adjust their
grading scale, which makes comparison to other sets of essays problematic. This
issue is further exaggerated when there are multiple evaluators of written text as is
the case with the essay writing portion of the Standardized Aptitude Test (SAT)
in the United States. To dig deeper into these questions we attempt to use current
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text mining approaches and circular data analysis theory to extract more specific
semantic information. In this analysis, we provide a tool which can further highlight
the differences in textual responses and which goes much deeper than the grades.

2. Textual Decomposition and Circular Analysis

Decomposition of a collection of text documents into a vector space is an active
area of research with encouraging results in a wide variety of applications.1 In
particular, a large body of effort has been dedicated to text-mining with applications
to educational scoring of student essays and is best represented by the subdisciplines
of eLearning and Computational Linguistics.2–5

2.1. Vector Space Model and Latent Semantic Analysis

We begin with a brief introduction to the text processing involved in setting up our
method. The main vehicle for text analysis used in this work is based on the Vector
Space Model (VSM).6,7 Under the VSM, each document is simply considered to be
a collection of words regardless of syntax, capitalization, or ordering of the words.
In essence, the Vector Space Model creates a high dimensional document space,
where each word is considered a dimension and each document lies somewhere in
this space. Under this setting, document vectors may be compared just as in any
other vector space. When put in matrix form with rows corresponding to unique
terms and columns associated with unique documents, the matrix XTD is typically
called a term-document matrix. The entries (i, j) in XTD can be taken to be any
function of the frequency of term j in document i, such as binary indicator function,
raw frequency, or the more commonly used term frequency × inverse document fre-
quency (TFIDF) scheme,7 a weighting scheme which normalizes the local frequency
with its global relative frequency.

The basic VSM models offer a convenient way to represent textual documents
in a mathematical framework, but has several limitations in most practical applica-
tions. For instance, as more documents with disparate topics are included the size
of the dictionary grows, and thus the dimensionality of the original term-document
matrix also grows. Even for a modest collection of documents, the dictionary size
can be very large. In addition, the distribution of words in most text collections
follow a Zipf distribution implying that most words occur only once and a small
set accounts for most frequency. Similarly, in most document collections there are
many common words that are ambiguous or offer no semantic inference.

To solve the problems associated with the original VSM, Deerwester et al.8

proposed a secondary step of decomposing the term-document matrix to find a
lower rank approximation to the document structure that in theory would isolate the
major semantic structure of the document space. The main driving force for this is to
approximate the original term document matrix with a lower order approximation
based on the eigenvalues of XTD. The basic algorithm of Latent Semantic Analysis
(LSA) is to first construct the Term-Document Matrix XTD. In the next step a
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Singular Value Decomposition is performed on XTD such that XTD = U × S × V ′.
The top k singular values of S are then retained and a lower rank approximation
X

(k)
TD is then calculated. For further explanation the reader is referred to the seminal

work of Deerwester et. al. The benefits of this method are that it removes the noise
associated with the collection and retains only the most prominent themes. More
importantly, because of the approximation, generally the entries will not be sparse.
As one can show, X

(k)
TD is the best rank k model with least squares fit to XTD.

In this work, we are mainly interested in measuring how far a student’s writing
is from the source author. Naturally, to do this we need a formal definition of what
constitutes distance in the document space. For this we use the common method of
measuring distance between two document vectors by the cosine of the angle which
separates them. A linear distance between two points is not used since only those
texts with approximately equal number of unique terms and frequency would be
considered close. Since we do not wish to penalize student essays that do not match
the frequency of term usage, we use angular distances that better reflect similarity
in concept. In n-dimensional space this takes the form of the dot product of the two
vectors, when they are normalized. The cosine of the angle between two vectors, x

and y, is defined as C(x, y) =
(

x
||x||

y
||y||

)′
and thus the angle between x and y is

θx,y = arccos(C(x, y)). (1)

2.2. Circular Analysis

In much of the analysis of textual collections, distances are frequently calculated
among documents, with various objectives such as clustering and measuring distance
distributions from a given source. As a consequence of converting a collection of
documents into a vector space defined by the dictionary of words and using angles
between vectors as the distance metric, the document vectors can be considered to be
points on the unit hypersphere. Thus, for making inferences on such measurements,
we turn to the theory of circular statistics and borrow relevant tools.

Much work has been done in the field of circular statistics, see for instance9,10

for comprehensive coverage of the field. As pointed out in these books, there is
considerable difference between the treatment of linear variables and the circular
case. For a set of observations on circular/angular data α1, . . . , αn, a mean direction
may be obtained by first treating each observation in terms of its cosine and sine
components and obtaining the resultant vector as defined by

R = (
n∑

i=1

cos αi,

n∑

i=1

sin αi).

The direction that this resultant points to, is the mean direction for the data set
and at the same time, the length of this resultant vector provides a useful measure
of how concentrated the data are. Define C =

∑
cos αi and S =

∑
sin αi, then the

length of the resultant vector, |R| =
√

C2 + S2, is an indicator how concentrated
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the angles are near this mean direction.9 It is straightforward to see that the length
of the resultant vector reaches a maximum at n and a minimum at 0. The case when
|R| = 0 corresponds to the situation where the angles are evenly distributed on the
circumference and in this case a mean direction is said to not exist. Conversely,
|R| = n when all the observations take the same value. A measure of dispersion
based of the resultant vector is given by (n − |R|). The direction of the resultant
vector, α̂0, is the mean direction for the circular data and is given by

α̂0 = arctan
(

S

C

)

for C > 0, S ≥ 0. For the definition of α̂0 for other combinations of C and S see
Jammalamadaka and SenGupta (2001).9

Specifically, the von Mises distribution, also known as the Circular Normal, will
be employed to model distances between documents in the context of analyzing
student texts. The main idea behind this distribution is that the angles have uni-
modal distributions symmetrically distributed around a single mode, on the circle.
This has many analogies to the Normal distribution on the real line. The probabil-
ity distribution function for angles θ following a von Mises distribution with mean
direction µ and concentration parameter κ is given below

f(θ; µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ) (2)

for 0 ≤ θ < 2π , 0 ≤ µ < 2π, and κ ≥ 0 where I0(κ) is a modified Bessel function
of the first kind. An important result shown in9 for large values of κ is

2κ(n− |R|) approx∼ χ2
n−1. (3)

which follows partly because, for large values of κ, the Circular Normal distribution
can be well approximated by a Normal distribution. Although the angles between
two unit vectors lie in the range [0, π), the von Mises distribution defined on the
entire circle [0, 2π) provides a reasonable model for our case since a large κ ensures
that the angles are tightly distributed in a small arc around the mean direction.

3. Optimal Vector Space Representation

One of the most critical steps in conducting a Latent Semantic Analysis on any text
collection is determining the appropriate number of dimensions, k, to project the
original term document matrix on. Even the authors of the seminal paper introduc-
ing LSA admit that choosing the appropriate number of dimensions to be an open
research issue.8 In fact, determining this number is an active area of research in the
information retrieval community.11,12 The reason why this poses such a challenging
problem is because of the subjective nature of text. On the one hand, having too few
components may lead to a compressed space which does not accurately capture the
distinct semantic concepts and on the other hand retaining too many components
leads to high dimensional spaces which are known to be inefficient for measuring
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distances of any type. This phenomenon is known as the curse of dimensionality .7

Furthermore, in many cases a document collection may not have a strict ordering. A
common example of this is seen with the results of a World Wide Web search from
any search engine, such as Google. The evaluation of the ordering of the returned
list is dependent on the initial objectives of the user and cannot be expected to be
the same for any arbitrary user.

In the present case of analyzing student essays we are initially faced with the
same challenges. However, when one is given the additional information of the in-
structor assessed grades for the essays, we may take this as the definitive ordering
of the documents. Another way to think of this additional information is as the
instructor’s personal (and often internal) distance measures for each student’s essay
from an expected optimal essay. The assumption that an instructor’s assessment
in the form of grades would be available is a reasonable one since it could not be
expected that student’s performance on a written essay should be determined solely
by a computer program.

In this work we show how to choose an optimal number of dimensions for a text
space decomposition based upon a set of instructor given grades. To begin, we first
discuss some score functions used to evaluate the performance of a particular text
space.

3.1. Loss Functions

For each lower rank approximation, X
(k)
TD, k ∈ {1, . . . ,min(rows(X), cols(X))}, a

loss (or score) function is required to assess how good a match the document space is
to the human judged ordering. The overall idea is that we order the semantic angular
distances and partition the ordering according the the grading partitioning desired.
Then, if a student is categorized in the same partition for both angular semantic
distances and grades, a successful match is made. In the subsequent analysis, a
document space will be created for every level of dimensionality from the full model
with no dimension reduction to the overly simple case of only 1 dimension. With that
in mind, we now present the following score and loss functions. For n students and
i ∈ {1, . . . , n}, let d

(k)
i = angle between author text and ith student text when using

a vector space model with k dimensions, where the angle is calculated as in Equation
(1). Similarly, let yi = grade for ith student, yi ∈ {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}.

Next define Qj , j = 1, . . . , J to be the grading partitions. For example, if three
partitions are desired, a possible configuration of partitions is Q1 = {10, 9} , Q2 =
{8, 7}, Q3 = {6, 5, 4, 3, 2, 1, 0}, with Q0 ≡ ∅. The introduction of Qj is necessary
to compare the rankings of the grades and the document distances which are on
different scales. To represent the students who are graded at a particular level define
GQj to be the set of all students who are graded in the jth partition, i.e.

GQj = {i : yi ∈ Qj}.
Finally, we partition the ordered angular distances according to the same level as
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for the grades

T
(k)
Qj

= {i : d
(k)
i ∈ {d(k)

(|Qj−1|+1), . . . , d
(k)
(|Qj−1|+|Qj |)}}

where d
(k)
(m) is the mth ordered distance for the kth document space and |Qj | denotes

the cardinality of Qj . T
(k)
Qj

is simply the set of students whose angular semantic
distances are partitioned in the same fashion as for their grades. Instead of using
the usual form of the loss function which assigns a penalty to misclassification, we
opt to instead use the equivalent score function which shows the number of correct
matches so that a better intuition is gained about its results. Using this notion,
we can now state the Zero-One score function for the dimension structure which
produces the distances given in d as

S(d(k), y) =
J∑

j=1

∣∣∣G{Qj}
⋂

T
(k)
{Qj}

∣∣∣ (4)

where J is the number of grading partitions. Note that for n total students the
equivalent loss function is recovered as L(d, y) = n−S(d, y). Figure 1 demonstrates
the idea behind this scoring function.

Fig. 1. Grading Partition Example

This function measures the amount of overlap between the assessment of the
essays given by the teacher and those generated by the LSA model. However, it
is of interest to understand how students interpret the material. There are various
theories as to how students retain and comprehend educational material.13,14

One point of view is that a student who understands the material will write
‘close’ to an authors source text. With this point of view, strong comprehension
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of an idea would translate to angles which are near the source document vector.
Another point of view is that students comprehend the course content when they
internalize the material. In this case comprehension would be represented by angles
which were furthest from the source document vector, since it can be expected
that a students vocabulary would be quite different from the source authors. In the
following analysis we test both ideas by considering the ranking of both sets of lists.

For each set of dimensions we calculate the distances from the author as given
by the angle between the vectors in the reduced principal component space. When
considering the first theory we rank these distances in ascending order from the
smallest distance to the largest. In the second theory, which states that students
internalize the material, distance ranking is in descending order from largest to
smallest. This follows because if a student internalizes the material then they should
presumably be the furthest semantically from the source author, because they use
their own words.

An alternative loss function used is the more general L1 distance. Using the
notation above, suppose that there are J partitions and that for each student there
is an angular distance d

(k)
i . Recall that d

(k)
i is the angle between the source text

and a student’s essay when represented in a vector space with k dimensions. Then,
for T

(k)
Qli

under a specified ordering and a instructor assessed grade classified into
GQmi

for the ith student, the the loss associated with these students for the given
document structure is given by:

L(d(k), y) =
∑

i

|li −mi|, for li,mi ∈ {0, 1, 2, . . . , J}. (5)

Equation (5) differs from Equation (4) in that it measures the severity of the
misclassification. These extra penalties help to understand how different a particular
angular ordering is from the grade assessments. As with the score function, the
outcome from these functions are dependent on the whether ascending or descending
orders are used.

For every possible vector space representation of the document collection, the
two score functions described above may be applied to assess their validity, and
thus identify the optimal representation of the document collection in the vector
space. Once an optimal structure is found, further analysis may be based on this
document vector space.

3.2. Testing Hypotheses using Circular Analysis of Variance

Through the representation of the document collection by means of the Vector
Space Model, a high dimensional vector space is created where the dimensionality
is determined by the vocabulary of the text corpus. By normalizing each of these
vectors, one may consider that the sample of documents reside on the surface of
the unit hypersphere. Further, since we are interested in how course content has
disseminated among the students, we wish to investigate the pair wise distances to
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the source material. In doing this, the vector space is reduced to the circle since we
now only consider the angles which separate a student’s work from the author’s.

In classical linear statistics, comparisons of the treatment effects in a population
is most conveniently done using an Analysis of Variance (ANOVA) under some
commonly valid assumptions. In this present case, we also wish to test hypothesis
concerning the effects of various treatments and accordingly we turn to the circular
analogy of the analysis of variance. One of the central assumptions of this approach is
that the angular data be approximately distributed as a von Mises distribution (see
Equation (2)). This is analogous to the linear case in that the data are approximately
normally distributed. A further assumption for this approach is that the common
concentration parameter κ is reasonably large. These assumptions ensure that the
von Mises distribution can be well approximated by a Normal distribution, since
a large value of κ means that much of the data are contained in a relatively small
band of the circle. As described in Jammalamadaka and SenGupta,9,15 an exact
test for comparing several mean directions is not available because of the presence
of the unknown nuisance parameter κ. Instead, using the assumptions that the data
are distributed as a von Mises distribution and that the concentration parameter,
κ, be large, an approximate test of hypothesis is used which relies on the resultant
vectors.

Formally, suppose we wish to test the hypothesis that for p independent popu-
lations, the mean directions are all the same,

H0 : µ1 = · · · = µp

where µi = mean direction for ith population. The basic intuition is that under the
null hypothesis, the direction of the resultant vector for each of the p populations
should be approximately the same. Let R = |R| and Ri = |Ri| be the lengths of the
result vectors for the set of angles corresponding to the combined total and for the
ith population, respectively. Analogous to the linear case, (ni−Ri) can be thought
of as within variation in each population, which in the circular domain translates
to the within dispersion. Similarly, the total dispersion (sum of squares total in the
linear case) for the data is given by (n−R), where n =

∑
ni. It can now be shown

that the total dispersion may be decomposed much like in the linear case,

n−R =
(
n−

∑
Ri

)
+

(∑
Ri −R

)

=
(∑

(ni −Ri)
)

+
(∑

Ri −R
)

. (6)

By multiplying the value 2κ in Equation (6), we can recall the result of Equation
(3), which leads to a similar χ2 segmentation given by

χ2
n−1 = χ2

n−p + χ2
p−1.

Then by an analogous argument to the linear case, an analysis of variance, or
F-Test, may be implemented by comparing the test statistic
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F =
(
∑

Ri −R)/(p− 1)∑
(ni −Ri)/(n− p)

to the upper percentiles of an F (ν1, ν2) distribution with ν1 = p − 1 and ν2 =
n − p. The classical ANOVA table can then be represented in the circular case as
seen in Table 1.

Source of
Deviation d.f. SS MS F-Stat

Between p− 1
p∑

i=1

Ri −R SSB

p−1
MSB

MSW

Within n− p
p∑

i=1

(ni −Ri) SSW

n−p

Total n− 1 n−R

It is important to mention that the arguments for an approximate analysis
of variance are based on assumptions that the concentration parameter be large
enough, which must be checked prior to the analysis, Jammalamadaka and Sen-
Gupta9 show that reasonable results may be obtained when the sample mean re-
sultant length greater than .45. When concentration assumptions cannot be met
alternative techniques may be employed, for example see Jammalamadaka.16

For the context of analyzing student essays, we will employ the approximate
circular analysis of variance to test for various factors and their effects on the
semantic distribution.

4. Results

The data used for this analysis was obtained as part of a larger study conducted at
the University of Basel, Switzerland by Dr. Terry Inglese and consists of student text
essays from a Swiss Political Science course.17 Each student was required to write
three essays with regard to three different philosophers: Paul Feyerabend, Claude
Lévi Strauss, and Andrea Semprini. For each author, an authoritative text was
available that served as the source of themes for which the students were instructed
to comment on. In addition, teacher evaluated scores were also available for a total
of 63 students. The data were collected throughout the entire course along with each
student’s native language. For simplicity we have grouped the non-native speakers
into the same classification. The data are summarized in the Table 2 below.

To begin, we show how the students perform based on the term document matrix
without any post processing but allowing for a stoplist, stemming, and TFIDF
weighting scheme. It should also be noted that all of the textual essays were in
Italian. Figure 2 shows how nearly all of the student responses to each of the three
authors are near orthogonal to the original source material which is located at the
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Source Authors
Feyerabend Levi Strauss Semprini

Word Count 524 634 2146
# of Essays 63 62 57

Avg Word Count 153 167 153
Italian/Non-Italian 45/18 45/17 43/14

due East position. The graphs were generated by mapping the high dimensional
document vectors to the plane by simply graphing the angle between each essay
and the target text.

Fig. 2. Angular distance using original TD matrix

These figures illustrate the idea that as the number of dimensions increase the
document vector space becomes very sparse. It appears that nearly all of the textual
responses are perpendicular to the source material, which illustrates the curse of
dimensionality discussed previously.

Next we implement the LSA approach to remove the noise in the data and to
try to extract the top themes in the collection. Recall that choosing the appropri-
ate number of singular values is equivalent to choosing the appropriate number of
principal components. One crude way of choosing an appropriate number of prin-
cipal components is to investigate a scree plot, which is a graph of the ordered
eigenvalues from biggest to smallest. A heuristic approach is to choose the number
of components, k, such that there is minimal change in the scree plot for subse-
quent eigenvalues. This method is related to the percentage of variance explained
in the data set by retaining the first k principal components. Figure 3 shows the
traditional scree plot and percent of variance explained as a function of dimension.
Based on the scree plot, one may consider choosing approximately 10 to 12 principal
components, since those are the dimensions for which the ordered eigenvalues begin
a graduated descent. Similarly, if one wished to retain a set amount of variance in
the data, such as 80%, then it would be reasonable to consider using approximately
80 components. Clearly, the choice of criteria significantly affects the number of
principal components retained.

First, we show the sensitivity of angular distributions to the number of compo-
nents used. Figures 4, 5, and 6 shows how the distribution of distances from the
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Fig. 3. Traditional Scree plot and Percent of Variance explained by first k principal components

three authors changes for two different values of k.

(a) 3 Dims (b) 50 Dims

Fig. 4. Distance from Feyerabend to student essays as a function of dimension size

(a) 3 PCs (b) 50 PCs

Fig. 5. Distance from Levi Strauss to student essays as a function of dimension size

More generally Figure 7 shows how the mean distances change as a function of
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(a) 3 PCs (b) 50 PCs

Fig. 6. Distance from Semprini to student essays as a function of dimension size

the principal components. Clearly, the choice of dimension is critical to the conclu-

Fig. 7. Mean Distance from Author as a function of Principal Component

sion of this statistical analysis. In the present work we now propose a methodology
for choosing the number of principal components, which optimizes the representa-
tion of the documents with respect to the human assessed grades. Accordingly, we
implement the two score functions discussed in Section 3.1 which help to identify
when an optimal document structure is reached.

4.1. Strict Grade Matching

In certain instances, an instructor may be interested in knowing how varied the
textual essays are within every individual grade level. Suppose that grades are
given by the instructor on an 11 point scale such that a perfect score corresponds
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to a grade of 10 while the score of 0 is given for incorrect answers with no partial
credit. The first partitioning attempted is when the grade level resolution matches
the exact assignment of grades as the teacher. That is to say when

Qi = {(10− i)} i = 0, . . . , 10.

Also for each of the partitions considered we implement both ascending and de-
scending ordering. Tables 3, 4, and 5 show the results of the strict partitioning,
where the row ‘Optimum’ refers to the maximum of the Zero-One score function
or the minimum of the L1 loss function. The row ‘Dim #’ refers to the dimensions
where the optimum value is obtained. Figure 8 shows a typical portrayal of the val-
ues of the score and loss function for the author Semprini, as defined in equations
(4) and (5), when considering direct matches with the instructor’s evaluation. As
can be seen the maximum attainable match in this data set is 31.6%.

(a) Score Function (b) Loss Function

Fig. 8. Values of Score and Loss function for author Semprini with 11 partitions

Feyerabend
S(d, y) L(d, y)

A D A D
Optimum 14 20 134 102
% correct 22.2% 31.8% 22.2% 20.6%
Dim # 1 167 1 8-9

Qj = {10− j} j = 0, . . . , 10

An immediate pattern in the score and loss functions for all essays written is
that the descending order better captures the grade ranking given by the instructor.
When considering the 11 strict partitions, the descending order outperforms the
ascending order for all three authors. For the essays written about Levi Strauss,
there appears to be consistency in both the percentage of correct matches and in



December 15, 2007 9:40 WSPC - Proceedings Trim Size: 9.75in x 6.5in OptimalTextDecomp2

14

Levi Strauss
S(d, y) L(d, y)

A D A D
Optimum 14 15 108 102
% correct 22.6% 24.2% 19.4% 21%
Dim # 4 5-8 180-185 55,56

Qj = {10− j} j = 0, . . . , 10

Semprini
S(d, y) L(d, y)

A D A D
Optimum 16 18 112 138
% correct 28% 31.6% 28% 31.6%
Dim # 182-185 40 183-185 40,43

Qj = {10− j} j = 0, . . . , 10

the dimension. However, for Feyerabend there is a significant difference between
the number of matches and the dimensions where they are achieved for ascending
and descending orders. The case for the essays which are written about Semprini
also shows considerable differences in the optimal dimension. Furthermore, we see
that the Zero-One score function consistently outperforms the L1 loss in terms
of finding the dimension with the most percentage of correct matches with the
instructor grades, but this is to be expected since the L1 loss is a generalization
of the Zero-One loss. However, the benefit of using L1 loss is that it shows other
dimensions that have matches close to the Zero-One case, which in some cases be
at a lower dimension number. An example of this is seen in the essays written
about Feyerabend in the decreasing order setup. There we see that at compromise
of approximately 11% in overlap with the instructor’s grades, we may reduce the
number of dimensions by over 150. Alone, this may not seem like a good trade, but
when taken in conjugation with all of the other partitions, it may balance in the
long run.

4.2. Three Level Partition

The next partition investigated is when an instructor wishes to see how the top
grades are distributed. In this case, a possible ordering is to set the following par-
titions to

Q1 = {10, 9}, Q2 = {8, 7}, Q3 = {6, 5, 4, 3, 2, 1, 0}.
Tables 6, 7, and 8 show the results of the three level partitioning. Figure 9 shows

the values of the score and loss function for the author Levi Strauss under three
level partitioning.
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In this partition setup we observe that an increase in efficiency is achieved, which
is to be expected since we are relaxing our restrictions on the distance ordering.
However, in this case it is now observable that the descending order is best for
all groups under both loss functions. This finding seems to support the case that
students who understand the content better are internalizing their interpretation.
Also, with the exception of the essays written about the theory of Feyerabend, all
of the optimal dimensions are well below the full model and seem to be less than 50
principal components. Again we observe that for the case of Feyerabend essays, a
compromise of approximately 5% in overlap with the instructor’s grades allows one
to represent the document space with over 150 reduced dimensions.

(a) Score Function (b) Loss Function

Fig. 9. Values of Score and Loss function for author Levi Strauss with 3 partitions

Feyerabend
S(d, y) L(d, y)

A D A D
Optimum 22 33 52 36
% correct 34.9% 52.4% 34.9% 47.6%
Dim # 1,10-11 161-167 1 8,9

Q1 = {10, 9}, Q2 = {8, 7}, Q3 = {6, 5, 4, 3, 2, 1, 0}

4.3. Binary Partitions

The final partition considered is when an instructor is simply interested in analyzing
the scores for those students who passed the question and those who did not. In
this situation, the partition is defined by

Q1 = {10, 9, 8, 7}, Q2 = {6, 5, 4, 3, 2, 1, 0}.
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Levi Strauss
S(d, y) L(d, y)

A D A D
Best 28 26 40 40
% 45.1% 41.9% 45.1% 41.9%

Dim # 6-8,180-185 27,49-56,58 180-185 49-56,58

Q1 = {10, 9}, Q2 = {8, 7}, Q3 = {6, 5, 4, 3, 2, 1, 0}

Semprini
S(d, y) L(d, y)

A D A D
Best 31 33 38 38
% 54.4% 57.9% 54.4% 57.9%

Dim # 182-185 40 174-185 34-36,38-40,43-44

Q1 = {10, 9}, Q2 = {8, 7}, Q3 = {6, 5, 4, 3, 2, 1, 0}

Tables 9, 10, and 11 show the results of the binary partitioning.
An immediate observation for this case is that both the Zero-One score function

and the L1 loss function yield identical results for all three authors. Again, this is
no coincidence since at a binary partition the largest difference between any two
classifications can at most be one. Thus, in this case both the Zero-One and L1

loss are equivalent. With regards to efficiency of matching the instructor’s grading
order, the binary partition achieves the best results, with nearly 70% accuracy in
most cases. There is again a consistent gain in performance by using the descending
order for distances. This further supports the idea that the student who better
understands the material is internalizing the content and uses his or her own words.
Finally, the dimension number which achieves the best performance is clearly less
than the full model and seems to be near 40 and in the case of Feyerabend is at two
dimensions.

Feyerabend
S(d, y) L(d, y)

A D A D
Best 33 43 30 20
% 52.4% 68.3% 52.4% 68.3%

Dim # 7,36-50 2 7,36-50 2
Q1 = {10, 9, 8, 7}, Q2 = {6, 5, 4, 3, 2, 1, 0}
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Levi Strauss
S(d, y) L(d, y)

A D A D
Best 34 42 28 20
% 54.8% 67.7% 54.8% 67.7%

Dim # 4,106, 44,45, 4,106 44,45,
108-112, 47-49, 108-112, 47-49,
126-170 51-64 126-170 51-64

Q1 = {10, 9, 8, 7}, Q2 = {6, 5, 4, 3, 2, 1, 0}

Semprini
S(d, y) L(d, y)

A D A D
Optimum 39 39 18 18
% correct 68.4% 68.4% 68.4% 68.4%
Dim # 183-185 37-44 183-185 37-44

Q1 = {10, 9, 8, 7}, Q2 = {6, 5, 4, 3, 2, 1, 0}

4.4. Comparison of Orderings

After investigating various outcomes from the different partitioning levels, we now
combine the scores of all three partitions to help guide a choice for an optimal
dimension regardless of partitions. Figure 10 shows the overall distributions of the
three partition levels when considering the distance ranking in ascending order.
That is, when we consider that small distances relate to closer matching.

(a) Combined Score (b) Combined Loss

Fig. 10. Combined Score and Loss functions at all 3 partitions - Ascending Order

In the combined graph for the score function in ascending order we observe that
the optimal dimension is attained at very high levels. Specifically, the optimal di-
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mension for all three partitions is at 183 to 185. This is essentially the full model
with no dimension reduction. The results shown for the ascending order appear to
contradict the notion that the full document space is not appropriate for semantic
analysis. Similarly, the results for the L1 loss function also show an optimal dimen-
sion at a high level. The dimension which optimizes all three grade partitions is
equal to Zero-One score at levels 183 to 185.

(a) Combined Score (b) Combined Loss

Fig. 11. Combined Score and Loss functions at all 3 partitions - Descending Order

Figure 11 shows the combined scores for all authors in descending order. In this
case, we see a much different story. Clearly, using descending leads to a significantly
smaller dimension. The optimal dimension for all three partitions for the score
function is 39 to 40. Similarly, for the L1 loss the optimal dimension is chosen to
be 43 to 44. Coupled with the efficiency results seen above, we conclude that the
descending ordering appears to bear the most meaningful results in interpreting
how distances should be ranked.

4.5. Analysis of Variance

We next turn to an analysis of variance to demonstrate how an instructor could
use the document space to make inferences on the effect of a lesson. After being
satisfied with the choice of dimension for the text space we proceed to the next
phase which is the analysis of the space for effects of certain factors. In the present
case of student essays, we determine that descending ordering is optimal with a
dimension size of 40 principal components.

Using the results introduced earlier concerning the steps required for a circular
ANOVA, we begin by considering the effects of visibility of an author on students’
retention of material. The two authors Feyerabend and Levi Strauss are considered
the visible authors because of the way their lesson was interactively presented to
the class. For each unit, video, images, and audio of the actual author were available
for the students to explore. Conversely, the content from the author Semprini was



December 15, 2007 9:40 WSPC - Proceedings Trim Size: 9.75in x 6.5in OptimalTextDecomp2

19

taught in the usual textbook manner with no additional knowledge of the author.
Accordingly, there are p = 3 populations with n1 = 63, n2 = 62, n3 = 57, and
n = 182. We wish to test if the mean angular distance from the author is the same
for all authors. The hypothesis for this setup is

H0 : µ1 = µ2 = µ3

where µi is the mean direction for the ith population.
First we check to see if the estimates for the concentration parameter κ are

sufficiently large, in this case they are κ̂1 = 37.8, κ̂2 = 75.6, and κ̂3 = 89.8, which
are sufficiently large enough to continue with the analysis.

The sample resultant lengths are given by:

R1 = 62.2

R2 = 61.6

R3 = 56.7

and the pooled sample resultant length is

R = 180.1.

Combining these results with Table 1 we obtain the following table for testing the
equality of the mean directions when separated by author.

Source of
Deviation d.f. SS MS F-Stat

Between Groups 2 .4 .2 25
Within Groups 179 1.5 .008

Total 181 1.9

Clearly, we reject the hypothesis that angular means are all the same and upon
inspection of Figure 7, we notice that the distances for essays written on the content
of author Levi Strauss are significantly different from the other authors. Also, recall
that since we accepted the descending ordering for angular distances, the essays
for the theory of Levi Strauss appear to be better comprehended than the authors.
This suggests that there may be validity for the positive effects of showing students
pictures and videos of the authors they are learning. Of course, there are many other
affecting factors that may be playing a part here, but the methodology presented
above allows for further analysis of factors in a structured approach.

5. Conclusions

This aim of this paper is to provide a framework on how to build optimal textual
vector space representations of student text essays. Using the principles demon-
strated above, an instructor may investigate various hypotheses about a given data
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set. The key idea is that when the documents are converted to a vector space, which
can be thought of as points on the hypersphere, classical linear statistics are not
appropriate. In our present case, we performed a further conversion from points on
the hypersphere to points on the circle since we are interested in only the distances
from a common vector. Depending on the specific applications of the researcher this
may not always be the correct decision.

It may be noted that for the current data set, the range of angles were limited and
highly concentrated in an arc of small length, characterized by the large estimate
of κ. In such a special situation, a linear ANOVA and the usual F-test can perhaps
also be justified. But this is not true in general, and one should utilize the circular
ANOVA, which is described here.

As a test case we investigated how information in the form of educational con-
tent is distributed in the writings of students. Traditional information retrieval
approaches offer various suggestions for choosing an appropriate number of dimen-
sions in order to represent the document space. In the work presented here, we use
the grading assignment of the teacher as a score function to base the results of any
given vector space model decomposition. Our results show, that students who per-
form well on the assignments, tend to also have writing styles that are more unique
in comparison to the source material. This offers further evidence to the theory that
students internalize material when they have comfortable grasp on the content.
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